Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 340(6): 414-423, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37095629

RESUMO

During the evolution of astacin metalloprotease family genes, gene duplication occurred, especially in the lineage of teleosts, in which several types of astacins containing six conserved cysteines (c6ast) emerged. One of them is patristacin, originally found in syngnathid fishes, such as pipefishes and seahorses. Patristacin is expressed in the brood pouch and is present on the same chromosome as other c6ast (pactacin and nephrosin) genes. We first surveyed all the genes from 33 teleost species using a genome database, and characterized the genes by phylogenetic analysis. Pactacin and nephrosin gene homologs were found from all the examined species with only few exceptions, while patristacin gene homologs were found from only several lineages. The patristacin gene homologs were found as multicopy genes in most species of Percomorpha, one of the diverged groups in teleosts. Further diversification of the gene occurred during the evolution of Atherinomorphae, one of the groups in Percomorpha. Fishes of Atherinomorphae possess two types of patristacin, belonging to subclades 1 and 2. Among the Atherinomorpha, we chose the southern platyfish to examine the patristacin gene expression. Platyfish possess eight patristacin gene homologs, called XmPastn1, 2, 3, 4, 5, 7, 10, and 11. Of these genes, only XmPastn2 belongs to subclade 1, while the other seven belong to subclade 2. Only XmPastn2 showed strong expression in several organs of adult platyfish, as observed in reverse-transcription polymerase chain reaction of RNA extracts. Cells expressing XmPastn2 were predominantly mucus-secreting cells found in epidermis around the jaw, as revealed by in-situ hybridization. This result suggests that XmPastn2 is secreted and may contribute to mucus formation or secretion.


Assuntos
Ciprinodontiformes , Evolução Molecular , Animais , Filogenia , Genoma , Peixes/genética , Cromossomos , Duplicação Gênica , Ciprinodontiformes/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-35973649

RESUMO

The growth rate of broiler chickens has increased by 400% over the past 50 years, and breast yields continue to increase. This has led to an increase in thoracic muscle abnormalities in broilers, with wooden breast becoming a major issue worldwide. The etiology and the mechanism underlying the etiology of wooden breasts have not yet been elucidated; however, it occurs due to oxidative stress. Reactive oxygen species, which cause oxidative stress, are mainly produced in mitochondria. Thus, in this study, we investigated the relationship between the severity of wooden breast in broilers and the characteristics of mitochondria as the source of reactive oxygen species. Sampling of the pectoralis major muscle at the ventral cranial position was conducted in 50-day-old broilers. The severity of wooden breast was classified into three groups based on the muscle fiber roundness and wing-wing contact test, with highest severity in severe wooden breast and lowest severity in normal breast. Nicotinamide adenine dinucleotide tetrazolium reductase staining revealed an increase in darkly stained muscle fibers, indicating high severity of wooden breast. The mitochondria were swollen in severe wooden breast cases, with highest swelling in severe wooden breast and lowest swelling in normal breast. The expression levels of the mitochondrial antioxidant enzyme genes superoxide dismutase 1 and superoxide dismutase 2 were significantly lower in wooden breast-severe tissue than in normal tissue. These results suggest that when the levels of reactive oxygen species in muscle fibers, which should be constant, are increased, mitochondrial homeostasis is not maintained and the damage levels increase in various membranes of the cell, leading to the disruption of normal physiological functions.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Animais , Galinhas/metabolismo , Mitocôndrias/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/veterinária , Músculos Peitorais/metabolismo , Doenças das Aves Domésticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
BMC Ecol Evol ; 22(1): 9, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109790

RESUMO

BACKGROUND: Hatching is identified as one of the most important events in the reproduction of oviparous vertebrates. The genes for hatching enzymes, which are vital in the hatching process, are conserved among vertebrates. However, especially in teleost, it is difficult to trace their molecular evolution in detail due to the presence of other C6astacins, which are the subfamily to which the genes for hatching enzymes belong and are highly diverged. In particular, the hatching enzyme genes are diversified with frequent genome translocations due to retrocopy. RESULTS: In this study, we took advantage of the rapid expansion of whole-genome data in recent years to examine the molecular evolutionary process of these genes in vertebrates. The phylogenetic analysis and the genomic synteny analysis revealed C6astacin genes other than the hatching enzyme genes, which was previously considered to be retained only in teleosts, was also retained in the genomes of basal ray-finned fishes, coelacanths, and cartilaginous fishes. These results suggest that the common ancestor of these genes can be traced back to at least the common ancestor of the Gnathostomata. Moreover, we also found that many of the C6astacin genes underwent multiple gene duplications during vertebrate evolution, and the results of gene expression analysis in frogs implied that genes derived from hatching enzyme genes underwent neo-functionalization. CONCLUSIONS: In this study, we describe in detail the molecular evolution of the C6astacin gene in vertebrates, which has not been summarized previously. The results revealed the presence of the previously unknown C6astacin gene in the basal-lineage of jawed vertebrates and large-scale gene duplication of hatching enzyme genes in amphibians. The comprehensive investigation reported in this study will be an important basis for studying the molecular evolution of the vertebrate C6astacin genes, hatching enzyme, and its paralogous genes and for identifying these genes without the need for gene expression and functional analysis.


Assuntos
Evolução Molecular , Vertebrados , Animais , Peixes/genética , Metaloendopeptidases , Filogenia , Sintenia/genética , Vertebrados/genética
4.
Zoological Lett ; 8(1): 5, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135614

RESUMO

Fish possess one olfactory organ called the olfactory epithelium (OE), by which various chemical substances are detected. On the other hand, tetrapods possess two independent olfactory organs called the main olfactory epithelium (MOE) and vomeronasal organ (VNO), each of which mainly detects general odorants and pheromones, respectively. Traditionally, the VNO, so-called concentrations of vomeronasal neurons, was believed to have originated in tetrapods. However, recent studies have identified a primordial VNO in lungfish, implying that the origin of the VNO was earlier than traditionally expected. In this study, we examined the presence/absence of the VNO in the olfactory organ of bichir (Polypterus senegalus), which is the most ancestral group of extant bony vertebrates. In particular, we conducted a transcriptomic evaluation of the accessory olfactory organ (AOO), which is anatomically separated from the main olfactory organ (MOO) in bichir. As a result, several landmark genes specific to the VNO and MOE in tetrapods were both expressed in the MOO and AOO, suggesting that these organs were not functionally distinct in terms of pheromone and odorant detection. Instead, differentially expressed gene (DEG) analysis showed that DEGs in AOO were enriched in genes for cilia movement, implying its additional and specific function in efficient water uptake into the nasal cavity other than chemosensing. This transcriptomic study provides novel insight into the long-standing question of AOO function in bichir and suggests that VNO originated in the lineage of lobe-finned fish during vertebrate evolution.

5.
Sci Rep ; 11(1): 7230, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790319

RESUMO

Generally, animals extract nutrients from food by degradation using digestive enzymes. Trypsin and chymotrypsin, one of the major digestive enzymes in vertebrates, are pancreatic proenzymes secreted into the intestines. In this investigation, we report the identification of a digestive teleost enzyme, a pancreatic astacin that we termed pactacin. Pactacin, which belongs to the astacin metalloprotease family, emerged during the evolution of teleosts through gene duplication of astacin family enzymes containing six cysteine residues (C6astacin, or C6AST). In this study, we first cloned C6AST genes from pot-bellied seahorse (Hippocampus abdominalis) and analyzed their phylogenetic relationships using over 100 C6AST genes. Nearly all these genes belong to one of three clades: pactacin, nephrosin, and patristacin. Genes of the pactacin clade were further divided into three subclades. To compare the localization and functions of the three pactacin subclades, we studied pactacin enzymes in pot-bellied seahorse and medaka (Oryzias latipes). In situ hybridization revealed that genes of all three subclades were commonly expressed in the pancreas. Western blot analysis indicated storage of pactacin pro-enzyme form in the pancreas, and conversion to the active forms in the intestine. Finally, we partially purified the pactacin from digestive fluid, and found that pactacin is novel digestive enzyme that is specific in teleosts.


Assuntos
Precursores Enzimáticos , Proteínas de Peixes , Regulação Enzimológica da Expressão Gênica , Metaloendopeptidases , Oryzias , Pâncreas/enzimologia , Smegmamorpha , Sequência de Aminoácidos , Animais , Clonagem Molecular , Precursores Enzimáticos/biossíntese , Precursores Enzimáticos/genética , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Metaloendopeptidases/biossíntese , Metaloendopeptidases/genética , Oryzias/genética , Oryzias/metabolismo , Homologia de Sequência de Aminoácidos , Smegmamorpha/genética , Smegmamorpha/metabolismo
6.
Sci Rep ; 9(1): 2448, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792427

RESUMO

The hatcing enzyme gene (HE) encodes a protease that is indispensable for the hatching process and is conserved during vertebrate evolution. During teleostean evolution, it is known that HE experienced a drastic transfiguration of gene structure, namely, losing all of its introns. However, these facts are contradiction with each other, since intron-less genes typically lose their original promoter because of duplication via mature mRNA, called retrocopy. Here, using a comparative genomic assay, we showed that HEs have changed their genomic location several times, with the evolutionary timings of these translocations being identical to those of intron-loss. We further showed that HEs maintain the promoter sequence upstream of them after translocation. Therefore, teleostean HEs are unique genes which have changed intra- (exon-intron) and extra-genomic structure (genomic loci) several times, although their indispensability for the reproductive process of hatching implies that HE genes are translocated by retrocopy with their promoter sequence.


Assuntos
Replicação do DNA/fisiologia , Evolução Molecular , Peixes , Metaloendopeptidases/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Translocação Genética/fisiologia , Animais , Bass/classificação , Bass/genética , Sequência Conservada/genética , Replicação do DNA/genética , Éxons , Peixes/classificação , Peixes/genética , Deleção de Genes , Dosagem de Genes/fisiologia , Duplicação Gênica/fisiologia , Ictaluridae/classificação , Ictaluridae/genética , Íntrons/genética , Perciformes/classificação , Perciformes/genética , Filogenia , Análise de Sequência de DNA , Vertebrados/classificação , Vertebrados/genética
7.
J Exp Zool B Mol Dev Evol ; 328(3): 240-258, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28229554

RESUMO

Teleost egg envelope generally consists of a thin outer layer and a thick inner layer. The inner layer of the Pacific herring egg envelope is further divided into distinct inner layers I and II. In our previous study, we cloned four zona pellucida (ZP) proteins (HgZPBa, HgZPBb, HgZPCa, and HgZPCb) from Pacific herring, two of which (HgZPBa and HgZPCa) were synthesized in the liver and two (HgZPBb and HgZPCb) in the ovary. In this study, we raised antibodies against these four proteins to identify their locations using immunohistochemistry. Our results suggest that inner layer I is constructed primarily of HgZPBa and Ca, whereas inner layer II consists primarily of HgZPBa. HgZPBb and Cb were minor components of the envelope. Therefore, the egg envelope of Pacific herring is primarily composed of liver-synthesized ZP proteins. A comparison of the thickness of the fertilized egg envelopes of 55 species suggested that egg envelopes derived from liver-synthesized ZP proteins tended to be thicker in demersal eggs than those in pelagic eggs, whereas egg envelopes derived from ovarian-synthesized ZP proteins had no such tendency. Our comparison suggests that the prehatching period of an egg with a thick egg envelope is longer than that of an egg with a thin egg envelope. We hypothesized that acquisition of liver-synthesized ZP proteins during evolution conferred the ability to develop a thick egg envelope, which allowed species with demersal eggs to adapt to mechanical stress in the prehatching environment by thickening the egg envelope, while pelagic egg envelopes have remained thin.


Assuntos
Evolução Biológica , Óvulo/metabolismo , Glicoproteínas da Zona Pelúcida/biossíntese , Zona Pelúcida/metabolismo , Sequência de Aminoácidos/genética , Animais , Clonagem Molecular , Proteínas do Ovo/biossíntese , Proteínas do Ovo/genética , Feminino , Peixes/genética , Peixes/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Óvulo/crescimento & desenvolvimento , Glicoproteínas da Zona Pelúcida/genética
8.
Zoolog Sci ; 33(3): 272-81, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27268981

RESUMO

Hatching gland cells (HGCs) originate from different germ layers between frogs and teleosts, although the hatching enzyme genes are orthologous. Teleostei HGCs differentiate in the mesoendodermal cells at the anterior end of the involved hypoblast layer (known as the polster) in late gastrula embryos. Conversely, frog HGCs differentiate in the epidermal cells at the neural plate border in early neurula embryos. To infer the transition in the developmental origin of HGCs, we studied two basal ray-finned fishes, bichir (Polypterus) and sturgeon. We observed expression patterns of their hatching enzyme (HE) and that of three transcription factors that are critical for HGC differentiation: KLF17 is common to both teleosts and frogs; whereas FoxA3 and Pax3 are specific to teleosts and frogs, respectively. We then inferred the transition in the developmental origin of HGCs. In sturgeon, the KLF17, FoxA3, and HE genes were expressed during the tailbud stage in the cell mass at the anterior region of the body axis, a region corresponding to the polster in teleost embryos. In contrast, the bichir was suggested to possess both teleost- and amphibian-type HGCs, i.e. the KLF17 and FoxA3 genes were expressed in the anterior cell mass corresponding to the polster, and the KLF17, Pax3 and HE genes were expressed in dorsal epidermal layer of the head. The change in developmental origin is thought to have occurred during the evolution of basal ray-finned fish, because bichir has two HGCs, while sturgeon only has the teleost-type.


Assuntos
Anuros/classificação , Anuros/fisiologia , Evolução Biológica , Diferenciação Celular , Embrião não Mamífero/citologia , Peixes/classificação , Peixes/fisiologia , Animais , Endoderma/citologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Metaloendopeptidases/genética , Placa Neural/citologia , Filogenia , Fatores de Transcrição/genética
9.
J Exp Zool B Mol Dev Evol ; 326(2): 125-35, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26987447

RESUMO

Syngnathiform fishes carry their eggs in a brood structure found in males. The brood structure differs from species to species: seahorses carry eggs within enclosed brood pouch, messmate pipefish carry eggs in the semi-brood pouch, and alligator pipefish carry eggs in the egg compartment on abdomen. These egg protection strategies were established during syngnathiform evolution. In the present study, we compared the hatching mode of protected embryos of three species. Electron microscopic observations revealed that alligator pipefish and messmate pipefish egg envelopes were thicker than those of seahorses, suggesting that the seahorse produces a weaker envelope. Furthermore, molecular genetic analysis revealed that these two pipefishes possessed the egg envelope-digesting enzymes, high choriolytic enzyme (HCE), and low choriolytic enzyme (LCE), as do many euteleosts. In seahorses, however, only HCE gene expression was detected. When searching the entire seahorse genome by high-throughput DNA sequencing, we did not find a functional LCE gene and only a trace of the LCE gene exon was found, confirming that the seahorse LCE gene was pseudogenized during evolution. Finally, we estimated the size and number of hatching gland cells expressing hatching enzyme genes by whole-mount in situ hybridization. The seahorse cells were the smallest of the three species, while they had the greatest number. These results suggest that the isolation of eggs from the external environment by paternal bearing might bring the egg envelope thin, and then, the hatching enzyme genes became pseudogenized. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Smegmamorpha/embriologia , Smegmamorpha/genética , Animais , Clonagem Molecular , DNA Complementar , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Óvulo
10.
J Biochem ; 159(4): 449-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26711235

RESUMO

Six aspartic proteinase precursors, a pro-cathepsin E (ProCatE) and five pepsinogens (Pgs), were purified from the stomach of adult newts (Cynops pyrrhogaster). On sodium dodecylsulfate-polyacrylamide gel electrophoresis, the molecular weights of the Pgs and active enzymes were 37-38 kDa and 31-34 kDa, respectively. The purified ProCatE was a dimer whose subunits were connected by a disulphide bond. cDNA cloning by polymerase chain reaction and subsequent phylogenetic analysis revealed that three of the purified Pgs were classified as PgA and the remaining two were classified as PgBC belonging to C-type Pg. Our results suggest that PgBC is one of the major constituents of acid protease in the urodele stomach. We hypothesize that PgBC is an amphibian-specific Pg that diverged during its evolutional lineage. PgBC was purified and characterized for the first time. The purified urodele pepsin A was completely inhibited by equal molar units of pepstatin A. Conversely, the urodele pepsin BC had low sensitivity to pepstatin A. In acidic condition, the activation rates of newt pepsin A and BC were similar to those of mammalian pepsin A and C1, respectively. Our results suggest that the enzymological characters that distinguish A- and C-type pepsins appear to be conserved in mammals and amphibians.


Assuntos
Ácido Aspártico Proteases/genética , Mucosa Gástrica/metabolismo , Salamandridae/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Proteases/classificação , Ácido Aspártico Proteases/isolamento & purificação , Catepsina E/classificação , Catepsina E/genética , Catepsina E/isolamento & purificação , Clonagem Molecular , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Ensaios Enzimáticos , Precursores Enzimáticos/classificação , Precursores Enzimáticos/genética , Precursores Enzimáticos/isolamento & purificação , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peso Molecular , Pepsina A/classificação , Pepsina A/genética , Pepsina A/isolamento & purificação , Pepsinogênios/classificação , Pepsinogênios/genética , Pepsinogênios/isolamento & purificação , Pepstatinas/farmacologia , Filogenia , Inibidores de Proteases/farmacologia
11.
J Exp Zool B Mol Dev Evol ; 324(8): 720-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26514945

RESUMO

We investigated the evolution of the hatching enzyme gene using bester sturgeon (hybrid of Acipencer ruthenus and Huso huso), a basal member of ray-finned fishes. We purified the bester hatching enzyme from hatching liquid, yielding a single band on SDS-PAGE, then isolated its cDNA from embryos by PCR. The sturgeon hatching enzyme consists of an astacin family protease domain and a CUB domain. The CUB domains are present in frog and bird hatching enzymes, but not in teleostei, suggesting that the domain structure of sturgeon hatching enzyme is the tetrapod type. The purified hatching enzyme swelled the egg envelope, and selectively cleaved one of five egg envelope proteins, ZPAX. Xenopus hatching enzyme preferentially digests ZPAX, thus, the egg envelope digestion process is conserved between amphibians and basal ray-finned fish. Teleostei hatching enzymes cleave the repeat sequences at the N-terminal region of ZPB and ZPC, suggesting that the targets of the teleostei hatching enzymes differ from those of amphibians and sturgeons. Such repeat sequences were not found in the N-terminal region of ZPB and ZPC of amphibians and sturgeons. Our results suggest that the change in substrates of the hatching enzymes was accompanied by the mutation of the amino acid sequence of N-terminal regions of ZPB and ZPC. We conclude that the changes in the mechanism of egg envelope digestion, including the change in the domain structure of the hatching enzymes and the switch in substrate, occurred during the evolution of teleostei, likely triggered by the teleost-specific third whole genome duplication. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 720-732, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Proteínas do Ovo/genética , Peixes/metabolismo , Animais , Evolução Biológica , Proteínas do Ovo/metabolismo , Embrião não Mamífero/enzimologia , Peixes/embriologia , Hibridização Genética , Metaloendopeptidases/genética , Filogenia , Domínios Proteicos , Zona Pelúcida/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA